

CLASSE TSE/TSEXP: FONCTION EXPONENTIELLE: APC

I-Définition

1.Activité -1:(10 minutes)

Consignes

Montre que la fonction logarithme népérien est bijective et admet une bijection réciproque. Quel est le nom de sa bijection réciproque ?

Détermine l'ensemble de définition et l'ensemble des images de cette fonction.

2. propriétés :

Activité-2 (6 minutes)

Consignes

Pour tous nombres réels a et b, dégage tous les propriétés de la fonction exponentielle que vous connaissez.

La composée des fonctions logarithme et exponentielle donne-t-elle l'identité?

Synthèse partielle:

3. Variation:

Activité-3:(3 minutes)

Consigne

Les fonctions logarithmes et exponentielles étant des fonctions réciproques alors donné le sens de variation de la fonction exponentielle.

4-limites aux bornes de l'ensemble de définition :

Activité-4: (6minutes)

Consignes

Donne les limites suivantes :

$$\lim_{x\to\infty}e^x \qquad ; \qquad \lim_{x\to+\infty}e^x.$$

Dégage les limites suivantes :

(1)
$$\lim_{x \to \infty} x^n e^x$$
 , $n \ge 1$; (2) $\lim_{x \to \infty} \frac{e^x}{x^n}$, $n \ge 1$; (3) $\lim_{x \to 0} \frac{e^x - 1}{x}$.

Synthèse partielle:

5-Etude de la fonction $g(x) = e^x$:

Activité-5 : (15 minutes)

Consigne

Etudie la fonction exponentielle népérienne.

II-Dérivée de la fonction composée e^u :

Activité-6: (5 minutes)

Consigne

Détermine la dérivée première de chacune des fonctions suivantes :

$$a^{\circ}$$
) $f(x) = e^{3x}$; b°) $g(x) = e^{2x+5}$; c°) $h(x) = e^{x^2+7x-4}$; $i(x) = e^{\frac{x+1}{x-1}}$.

III-Primitive de $u' \times e^u$:

Activité-7 : (5 minutes)

Consigne

Détermine une primitive sur I de chacune des fonctions suivantes.

$$a^{\circ}$$
) $f(x) = 2e^{2x+\pi}$; b°) $g(x) = (2x+4)e^{x^2+4x-5}$; c°) $h(x) = x^2 \times e^{x^3-2}$.

IV-Résolutions d'équations et Inéquations :

Activité-8 : (9 minutes)

Consigne

Résous dans IR, les équations et les inéquations suivantes :

$$a^{\circ}$$
) $e^{5-2x} = 1$; b°) $e^{3x+1} = e^{\frac{x}{2}+5}$; c°) $e^{\frac{2x+1}{x-1}} - e = 0$; d°) $e^{x} < 0$; e^{0}) $e^{5x-1} \ge \sqrt{e}$.

Synthèse Générale:

I-Définition :

Il existe une seule fonction dérivable sur IR qui est égale à sa dérivée et prend la valeur 1 en 0.0n l'appelle fonction exponentielle et est notée : exp ou e.

- $\exp 0 = 1$
- $\forall x \in IR, (\exp)'(x) = \exp x$
- $\exp x > 0$
- La fonction exponentielle est strictement croissante sur $IR =]-\infty; +\infty[$.
- La fonction exponentielle est définie sur IR à valeurs dans $]0;+\infty[$.
- La composée $\exp \circ \ln(x) = \ln \circ \exp(x) = x$ c'est-à-dire $e^{\ln(x)} = \ln e^x = x$.

1-Règles de calculs :

Pour tous nombres réels a, b et pour tout nombre rationnel r, on a :

$$(1) e^a \times e^b = e^{a+b}$$

(2)
$$\frac{1}{e^a} = e^{-a}$$
 ;

(3)
$$\frac{e^a}{e^b} = e^{a-b}$$

$$; (4) \left(e^a\right)^r = e^{ra}.$$

Exemple: calcule

$$A = e^{2x-3} \times e^{-x+1}$$
 ; $B = \frac{e^{2x+1}}{e^{2x-5}}$; $C = \left(e^{\frac{1}{2}x}\right)^4$

Propriétés:

Pour tous nombres réels a et b, on a :

$$\checkmark e^a = e^b$$
 équivaut à $a = b$;

✓
$$e^a \prec e^b$$
 équivaut à $a \prec b$.

En particulier,

•
$$a \prec 0$$
 équivaut à $0 \prec e^a \prec 1$;

•
$$a = 0$$
 équivaut à $e^a = 1$;

•
$$a > 1$$
 équivaut à $e^a > 1$.

3-limites aux bornes de l'ensemble de définition :

$$\lim_{x\to\infty}e^x=0$$

$$\lim e^{x}$$

$$\lim_{x\to+\infty}e^x=+\infty.$$

Autres limites remarquables:

$$(1) \lim_{x \to -\infty} x^n e^x = 0$$

$$, n \ge 1$$

(1)
$$\lim_{x \to -\infty} x^n e^x = 0$$
 , $n \ge 1$; (2) $\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$, $n \ge 1$;

(Croissance comparée)

(3)
$$\lim_{x\to 0} \frac{e^x - 1}{x} = 1$$
.

4-Etude de la fonction $g(x) = e^x$:

a- Domaine de définition :

$$D_{g} = IR =]-\infty; +\infty[$$

b- Limites:

$$\lim_{x\to\infty}g(x)=\lim_{x\to\infty}\ln e^x=0$$

La droite d'équation y = 0 est asymptote à la courbe C_{g} .

 $\lim_{x\to +\infty} g(x) = \lim_{x\to +\infty} e^x = +\infty$ Possibilité d'asymptote oblique.

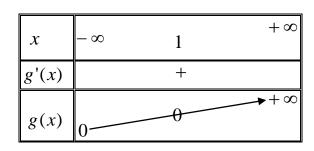
$$\lim_{x \to +\infty} \frac{g(x)}{x} = \lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$

 C_{g} admet en $+\infty$ une branche parabolique de direction (oy).

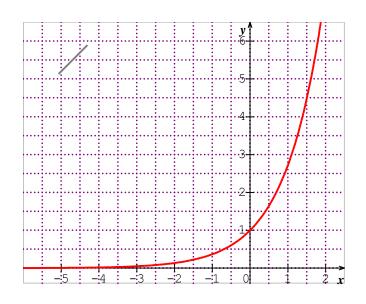
c-Dérivée:

 $g'(x) = e^x > 0$; $\forall x \in IR \ donc \ g \ est \ strictement \ croissante$

d-Tableau de variation :



f- Courbe:



- La droite d'équation y = 0 est asymptote verticale à la courbe C_g .
 - La tangente au point d'abscisse

$$x_0 = 0$$
 est $y = x + 1$.

 C_{g} admet en $+\infty$ une branche parabolique de direction (oy).

II-Dérivée de la fonction composée e^u :

Soit *u* une fonction dérivable sur un intervalle *I*.

La fonction qui à $x \mapsto \exp \circ u$, noté e^u est dérivable sur I. On a :

$$(e^u) = u \times e^u$$
.

III-Primitive de $u' \times e^u$:

Soit u une fonction dérivable sur un intervalle I, alors la fonction e^u est une primitive sur I de la fonction $u' \times e^u$.

IV-Résolutions d'équations et Inéquations :

Méthodologie:

Equation:

Pour résoudre une équation comportant des exponentielles, on peut :

- \triangleright On détermine l'ensemble de validité D_{ν} sur lequel l'équation est définie ;
- \triangleright On utilise les propriétés algébriques de la fonction exponentielle pour se ramener à une égalité de la forme : $e^u = e^v$ qui signifie a = b
- > On résout cette équation ;

Inéquation:

Pour résoudre une inéquation comportant des exponentielles, on peut :

- \triangleright On détermine l'ensemble de validité D_{ν} sur lequel l'inéquation est définie ;
- \triangleright On utilise les propriétés algébriques de la fonction exponentielle pour se ramener à une inégalité de la forme : $e^u \prec e^v$ qui signifie $u \prec v$.
- > On résout cette inéquation.

NB: Dans certain cas il suffit d'effectuer un changement de variable.

V-Fonction exponentielle de base a (a > 0):

Définition:

Soit a un nombre réel strictement positif et différent de 1.

- Pour tout nombre réel x, on a : $a^x = e^{x \ln a}$.
- On appelle fonction exponentielle de base a, la fonction : $x \mapsto a^x$.
- Pour tout nombre réel a strictement positif : $a^0 = 1$, $a^1 = a$.

Exemple:

$$3^{0.7} = e^{0.7 \ln 3}$$
 : $9^{-2.5} = e^{-2.5 \ln 9}$

Remarque:

- La fonction exponentielle de base eest la fonction réciproque de la fonction logarithme népérien.
- La fonction exponentielle de base 10 est la fonction réciproque de la fonction logarithme décimal.
- La fonction exponentielle de base 1 est la fonction constante $x \mapsto 1$.

Propriété:

 \triangleright Pour tous nombres réels strictement positifs a et pour tout nombre réel x, on a :

$$ln(a^x) = x ln a$$
.

➢ Pour tous nombres réels strictement positifs a et b, pour tous nombres réels x et y, on a :

$$(1) a^{x+y} = a^x a^y$$

$$(2) \ a^{-y} = \frac{1}{a^y}$$

(1)
$$a^{x+y} = a^x a^y$$
 ; (2) $a^{-y} = \frac{1}{a^y}$; (3) $a^{x-y} = \frac{a^x}{a^y}$;

$$(4) (a \times b)^x = a^x b^x$$

(4)
$$(a \times b)^x = a^x b^x$$
; (5) $\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$; (6) $(a^x)^y = a^{xy}$.

$$(6) (a^x)^y = a^{xy}.$$

Evaluation:

Etudier et représenter graphiquement les fonctions suivantes dans le même repère orthonormé:

1°)
$$y = 2^x$$

$$2^{\circ}) \ y = \left(\frac{1}{2}\right)^x$$

3°)
$$y = \left(\frac{3}{2}\right)^{x}$$

1°)
$$y = 2^x$$
 ; 2°) $y = \left(\frac{1}{2}\right)^x$; 3°) $y = \left(\frac{3}{2}\right)^x$; 4°) $y = \left(\frac{2}{3}\right)^x$.